

Agilent X-Series Signal Analyzer

This manual provides documentation for the following X-Series Analyzer: PXA Signal Analyzer N9030A

N9030A PXA Functional Tests

Notices

© Agilent Technologies, Inc. 2006 - 2008

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgements

Microsoft[®] is a U.S. registered trademark of Microsoft Corporation.

Windows[®] and MS Windows[®] are U.S. registered trademarks of Microsoft Corporation.

Adobe Reader[®] is a U.S. registered trademark of Adobe System Incorporated.

 $Java^{TM}$ is a U.S. trademark of Sun Microsystems, Inc.

MATLAB® is a U.S. registered trademark of Math Works, Inc.

Norton $Ghost^{TM}$ is a U.S. trademark of Symantec Corporation.

Manual Part Number

N9030-90018 Supersedes: None

Print Date

October 2009

Printed in USA

Agilent Technologies, Inc. 1400 Fountaingrove Parkway Santa Rosa, CA 95403

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Warranty

This Agilent technologies instrument product is warranted against defects in material and workmanship for a period of one year from the date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about this analyzer, including firmware upgrades, application information, and product information, see the following URLs:

http://www.agilent.com/find/pxa

To receive the latest updates by email, subscribe to Agilent Email Updates:

http://www.agilent.com/find/emailupdates

Information on preventing analyzer damage can be found at:

http://www.agilent.com/find/tips

1. Functional Tests	
Functional Test Versus Performance Verification	4
Contents of this Document	
Before Performing a Functional Test	
Test Equipment	
2. Displayed Average Noise Level (DANL)	
Procedure	
3. Frequency Readout Accuracy	
Procedure	14
4. Second Harmonic Distortion (SHD)	
Procedure	17
5. Amplitude Accuracy at 50 MHz	
Procedure	21
Testing Preamp Option (P03, P08, P13, P26)	
6. Frequency Response (Flatness)	
Procedure	27
7. Frequency Response (Flatness), Preamp On	
Procedure	31
8. Scale Fidelity	
Procedure	35
= = = = = = = = = = = = = = = = = = = =	

1 Functional Tests

Functional tests are tests of various instrument parameters that give a high degree of confidence that the analyzer is operating correctly. They are recommended as a check of analyzer operation for incoming inspection or after a repair. Measurement uncertainty analysis is not available for functional tests, and the analyzer is checked against limits that are wider than the published specifications. The functional tests are designed to test an analyzer operating within the temperature range defined by the analyzer specifications using a minimum set of test equipment. If a test does not pass, performance verification tests must be run to determine whether a problem exists.

Functional Test Versus Performance Verification

Functional tests use a minimum set of test equipment to check a much smaller range of parameters (and a limited number of data points for each parameter) than do performance verification tests. Functional tests use limits that are wider than the published specifications; measurement uncertainty analysis is *not* available for functional tests.

NOTE	If a functional test does not pass, you must run performance verification tests
	to determine whether a problem exists.

Performance verification tests span a wide range of instrument parameters and provide the highest level of confidence that the instrument conforms to published specifications. These tests can be time consuming and require extensive test equipment.

Contents of this Document

This chapter includes the following:

- "Before Performing a Functional Test" on page 6 (what to do first).
- "Test Equipment" on page 7 (a list of the equipment required for *all* of the tests).

Subsequent chapters describe the following Functional Tests:

- "Displayed Average Noise Level (DANL)" on page 9
- "Frequency Readout Accuracy" on page 13
- "Second Harmonic Distortion (SHD)" on page 15
- "Amplitude Accuracy at 50 MHz" on page 19
- "Frequency Response (Flatness)" on page 25
- "Frequency Response (Flatness), Preamp On" on page 29
- "Scale Fidelity" on page 33

Each functional test includes:

- Test limits (pass/fail criteria)
- A description of the test
- The equipment required for the test
- A figure showing how to connect the equipment
- Step-by-step instructions
- One or more tables in which to record the measurement results

Chapter 1 5

Before Performing a Functional Test

- 1. Ensure that you have the proper test equipment.
- 2. Switch on the unit under test (UUT) and let it warm up (in accordance with warm-up requirements in the instrument specifications).
- 3. Allow sufficient warm-up time for the required test equipment (refer to individual instrument documentation for warm-up specifications).
- 4. Ensure that the analyzer's frequency reference is set to Internal:
 - a. Press the Input/Output, More, Freq Ref In keys.
 - b. If the Freq Ref In softkey does not show Internal, press the Freq Ref In softkey and select Internal.
- 5. Following instrument warm-up, perform the auto align routine:

Press System, Alignments, Align Now, All.

NOTE

Functional test accuracy depends on the precision of the test equipment used. Ensure that all of the test equipment is calibrated before running a functional test.

TEST EQUIPMENT

The table below summarizes the test equipment needed to perform all of the functional tests. Alternate equipment model numbers are given in case the recommended equipment is not available. If neither the recommended nor the alternative test equipment are available, substitute equipment that meets or exceeds the critical specifications listed.

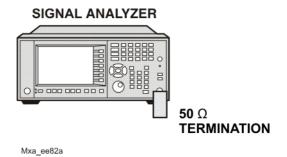
Analyzer Option	Item	Critical Specifications	Recommended Agilent Model	Alternate Agilent Model
	Adapters			
All	3.5 mm (f) to 3.5mm (f) (connector saver for source)	Frequency: 10 MHz to 26.5 GHz $VSWR$: < 1.1:1	83059B	1250-1749
All	BNC (f) to SMA (m)	Frequency: 40 MHz	1250-1200	
All	Type N (f) to Type N (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.05:1	1250-1472	1250-0777
All	Type N (m) to 3.5 mm (m)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1743	
All	Type N (m) to 3.5 mm (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1744	
All	Type N (f) to 3.5 mm (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1745	
All	Type N (m) to BNC (f)	Frequency: 10 MHz to 1 GHz VSWR: < 1.05:1	1250-1476	
	Attenuators			
All	10 dB Step Attenuator	Frequency: 50 MHz Range: 0 to 70 dB	8495A	8496A
All	10 dB Fixed Attenuator (2 required)	Frequency: 50 MHz VSWR: < 1.2:1	8493C Option 010	8493A Option 010 or 8493B Option 010
Preamp Options (Pxx)	30 dB Fixed Attenuator	Accuracy: < 0.05 dB @ 50 MHz	11708A	
	Cables			
All	3.5 mm (1 meter)	Frequency: 10 MHz to 26.5 GHz $VSWR$: < 1.4:1 $Loss$: < 2.0 dB	11500E	8120-4921

Chapter 1 7

Analyzer Option	Item	Critical Specifications	Recommended Agilent Model	Alternate Agilent Model	
All	Cable, BNC (3 required)	120 cm (48 in.) BNC cable	10503A		
	Signal Source				
All	Synthesized Sweeper	Frequency: 10 MHz to 26.5 GHz Harmonic level: < -40 dBc Amplitude range: 10 to -20 dBm Frequency Accuracy: 0.02%	PSG ^a	83630B, 83640B, 83650B	
	Power Meter				
All	Power Meter	Power Reference Accuracy: ±1.2% Compatible with power sensor	E4418B	E4419B	
All	Power Sensor	Frequency Range: 50 MHz to 3.66 GHz	8481D	8487D 8485D	
		Amplitude Range: -70 to -10 dBm			
P03	Low Power Sensor	Frequency Range: 50 MHz to 3.6 GHz	8481D	8485D 8487D	
		Amplitude Range: -70 to -10 dBm			
Preamp other	Low Power Sensor	Frequency Range: 50 MHz to 26.5 GHz	8485D	8487D	
than P03		Amplitude Range: -70 to -10 dBm			
	Miscellaneous Equipment				
All	Filter, 50 MHz Low	Cutoff Frequency: 50 MHz	0955-0306		
	Pass	Rejection at 65 MHz: > 40 dB			
		Rejection at 75 MHz: > 60 dB			
		Rejection at 80 MHz: > 60 dB			
		Frequency: 10 MHz to 26.5 GHz			
526	Power Splitter, 3.5 mm	Nominal Insertion Loss: 6 dB	11667B		
		Tracking Between Ports: < 0.25 dB			
503,	Power Splitter	Nominal Insertion Loss: 6 dB	11667A	11667B	
		Tracking Between Ports: < 0.25 dB			
All	Termination, 50Ω	Type N (m) Connector	909A		
		Frequency: 30 Hz to 26.5 GHz	Option 012		

a. PSG model numbers: E8244A, E8254A, E8247C Option 520, E8247C Option H31 or 540, E8257D Option 520, E8257D Option 550, E8257D Option 567, E8267D Option 544.

2 Displayed Average Noise Level (DANL)


Test Limits (with 0 dB input attenuation)

See Table 2-1 on page 11 for values.

The Displayed Average Noise Level (DANL) of the signal analyzer is measured across a 10 kHz frequency span at several center frequencies. The analyzer input is terminated into a 50Ω load. A test is performed to assure the measurement is not performed in the presence of a residual response. The measurement is then averaged, and the result is normalized to a 1 Hz bandwidth.

Item	Critical Specifications (for this test)	Recommended Agilent Model
Termination, 50Ω Type-N(m)	Frequency: DC to 18 GHz	909A Option 012

Figure 2-1 DANL Test Setup

Procedure

- 1. Configure the equipment as shown in Figure 2-1.
- 2. Press Mode, Spectrum Analyzer, Mode Preset on the analyzer.
- 3. Set up the signal analyzer by pressing:

FREQ Channel, Center Freq, 10, MHz Input/Output, RF Input, RF Coupling, select DC SPAN X Scale, Span, 10, kHz AMPTD Y Scale, -70, dBm AMPTD Y Scale, Attenuation, MechAtten, 0, dB BW, Res BW, 1, kHz BW, Video BW, 100, Hz Meas Setup, Average/Hold, Number, 20, Enter Trace/Detector, Trace Average Single

- 4. Press **Restart**, then wait for Average/Hold to display 20/20.
- 5. Press View/Display, Display, then press Display Line, On.
- 6. Rotate the knob and set the display line at the average amplitude of the displayed noise floor by visual inspection.
- 7. Confirm that the measurement is performed on the analyzer noise floor and not on a residual response within the displayed 10 kHz span.

NOTE Ignore the residual response if one appears when taking the measurement.

- 8. Enter the value of the display line as the Measured Average Noise Level at 10 MHz column in Table 2-1.
- 9. Normalize the measured value to a 1 Hz BW by adding -30 dB to the measured value.

NOTE

The -30 dB value is added because the formula used to calculate the value of the noise power in a 1 Hz BW when measured with a 1 kHz BW is:

Normalized Noise = 10 Log (BW 2/BW 1) where BW 2 is the 1 kHz BW we measure and BW 1 is 1 Hz BW to which we want to normalize.

Therefore, 10 Log (1000) = 30 dB, so the noise floor will be 30 dB lower in a 1 Hz BW.

- 10.Enter the normalized value of the displayed average noise level in Table 2-1.
- 11. The value of the normalized displayed average noise should be less than the specification value.

- 12. Change the analyzer center frequency to the next value listed in Table 2-1. Press: FREQ Channel, Center Freq, [Table 2-1 Value], GHz
- 13.Repeat step 4 through step 12 to fill in the remainder of Table 2-1 for your analyzer frequency range.

Table 2-1 Displayed Average Noise Level (DANL) Results

Center Frequency	Measured Average Noise Level (dBm)	Normalized Average Noise Level/(1 Hz BW) (dBm)	Test Limits (dBm)
10 MHz			-153
2 GHz			-151
6 GHz			-148
13 GHz			-147
20 GHz			-141
26.5 GHz			-135

Chapter 2 11

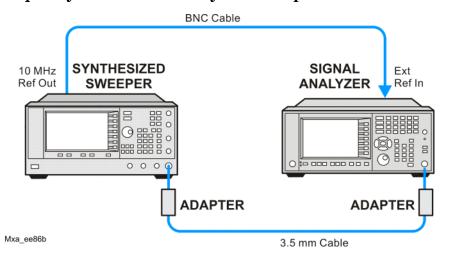
Displayed Average Noise Level (DANL)

Procedure

3 Frequency Readout Accuracy

Test Limits

Frequency Readout Accuracy is equivalent to the following equation:


 $\pm (0.25\% \times \text{span} + 5\% \times \text{RBW} + 2 \text{Hz} + 0.5 \times \text{horizontal resolution})$

See Table 3-1 on page 14 for actual values.

The frequency readout accuracy is measured in several spans and center frequencies that allow both internal analyzer synthesizer modes and prefilter bandwidths to be tested. Frequency reference error is eliminated by using the same frequency standard for the analyzer and signal source.

Item	Critical Specification (for this test)	Recommended Agilent Model
Adapter Type-N (m) to 3.5 mm (f)	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.1:1	1250-1744
Adapter 3.5 mm (f) to 3.5 mm(f)	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.1:1	83059B
Cable, 3.5 mm, 1 meter	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.4:1	11500E
Cable, BNC, 120 cm	Frequency: 10 MHz	10503A
Synthesized Sweeper	Frequency: 10 MHz to 1.51 GHz	PSG

Figure 3-1 Frequency Readout Accuracy Test Setup

Procedure

- 1. Configure the equipment as shown in Figure 3-1. Confirm the analyzer's built-in auto alignment has been performed within the past 24 hours.
- 2. On the synthesized sweeper, press **PRESET**, then set the controls as follows:

FREQUENCY, 1505, MHz POWER LEVEL, -10, dBm RF, On

3. Set up the signal analyzer by pressing:

Mode, Spectrum Analyzer
Mode Preset
Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 1505, MHz
SPAN X Scale, Span, 2990, MHz
Trace/Detector, More, Detector, Sample
Single

4. Press Restart.

Press **Peak Search** on the analyzer. If the instrument is functioning correctly, the marker reading in the active function block will be between the values listed in Table 3-1. Record the marker value in the Marker Frequency Readout column in Table 3-1.

- 5. On the signal analyzer, change the span and center frequency as listed in Table 3-1.
- 6. Change the synthesized sweeper frequency to match the center frequency of the analyzer.
- 7. Repeat step 4 through step 6 until the Marker Frequency Readout column of Table 3-1 is complete.

Table 3-1 Frequency Readout Accuracy Results

Span (MHz)	Center Frequency (MHz)	Minimum	Marker Frequency Readout	Maximum
2990	1505	1495.9 MHz		1514.1 MHz
127.2	1505	1504.56 MHz		1505.44 MHz
54.1	1505	1504.8122 MHz		1505.1878 MHz
7.95	1505	1504.97240 MHz		1505.0276 MHz
0.106	1505	1504.999630 MHz		1505.000370 MHz
1.98	517.59	517.58316 MHz		517.59684 MHz
1.98	832.50	832.49316 MHz		832.50684 MHz

4 Second Harmonic Distortion (SHD)

Test Limits

Applied Frequency	Mixer Level ^a	Distortion
40 MHz	–15 dBm	<-60 dBc

a. Mixer Level = Input Level - RF Attenuation

This test checks the second harmonic distortion of the signal analyzer by tuning to twice the input frequency and examining the level of the distortion product. A low pass filter is inserted between the source and the signal analyzer to prevent the source second harmonic from artificially raising the second harmonic product displayed on the analyzer.

Item	Critical Specifications (for this test)	Recommended Agilent Model
Adapter Type-N (m) to BNC (f)	Frequency: 10 MHz to 80 MHz VSWR: < 1.05:1	1250-1476
Adapter BNC (f) to SMA (m)	Frequency: 40 to 80 MHz	1250-1200
Adapter 3.5 mm (f) to 3.5 mm (f)	Frequency: 10 MHz to 80 MHz VSWR: < 1.1:1	83059B
Cable, BNC 120 cm (2 required)	Frequency: 10 to 40 MHz	10503A
Filter, 50 MHz Low Pass	Cutoff Frequency: 50 MHz Rejection at 65 MHz: > 40 dB Rejection at 75 MHz: > 60 dB	0955-0306
Synthesized Sweeper	Frequency: 50 MHz Spectral Purity: Better than -30 dBc	PSG

SYNTHESIZED SWEEPER

10 MHz
Ref Out
Ref In ANALYZER

(Not a Cable)

A = ADAPTER

Mxa_ee85c

BNC Cable

50 MHz
LOW PASS FILTER

Figure 4-1 Second Harmonic Distortion Test Setup

Procedure

- 1. Configure the equipment as shown in Figure 4-1.
- 2. Press Mode, Spectrum Analyzer, Mode Preset on the signal analyzer and Preset the synthesized sweeper.
- 3. Set up the synthesized sweeper by pressing:

Frequency, 40, MHz Amplitude, -5, dBm

4. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External FREQ Channel, Center Freq, 40, MHz SPAN X Scale, Span, 1, MHz AMPTD Y Scale, Attenuation, Mech Atten, 10, dB

- 5. On the analyzer, press Peak Search.
- 6. Adjust the synthesized sweeper amplitude for a signal analyzer display of -5 dBm ± 0.1 dB.
- 7. On the signal analyzer, activate the marker delta function by pressing the **Marker** and **Delta** keys.
- 8. On the signal analyzer, press:

FREQ Channel, Center Freq, 80, MHz Meas Setup, Average/Hold Number, 20, Enter Trace/Detector, Trace Average Single

9. Press **Peak Search**. Enter the displayed value under the Measured Second Harmonic Distortion (dBc) heading in Table 4-1.

Table 4-1 Second Harmonic Distortion Results

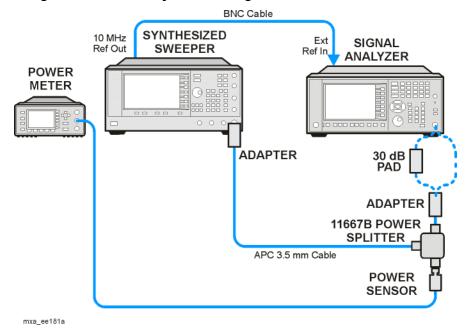
Applied Frequency (MHz)	Measured Second Harmonic Distortion (dBc)	Mixer Level (dBm)	Specification (dBc)
40		-15	-60

Chapter 4 17

Second Harmonic Distortion (SHD)

Procedure

5 Amplitude Accuracy at 50 MHz


Test Limits

Amplitude Accuracy should remain within 1.13 dB of the measured source value across the range of source levels and changes in resolution bandwidth. The preamp (Option P03, P08, P13, P26) should remain within ±1.3 dB of measured values.

A synthesized sweeper is used as the signal source for the test. The source amplitude is varied using the signal source amplitude control. The attenuation and resolution bandwidth are varied on the signal analyzer. The source amplitude is measured by the power meter and signal analyzer at each setting, and the values compared. The difference between each pair of measurements indicates the amplitude accuracy.

Item	Critical Specifications	Recommended Agilent Model
Adapter	Type-N (m), to 3.5 mm (m)	1250-1743
Adapter	3.5 mm (f) to 3.5 mm (f)	83059B
Attenuator, 30 dB	Accuracy: < 0.5 dB at 50 MHz	11708A
Cable	3.5 mm, 1 meter	11500E
Cable	BNC, 120 cm	10503A
Power Meter	Compatible with power sensor	E4418B
Power Sensor	Amplitude Range: -25 dBm to 10 dBm	8485A
Power Splitter	3.5 mm (f) connectors 6 dB loss	11667B
Synthesized Sweeper	Typical Temperature Stability: 0.01 dBc/° C	PSG

Figure 5-1 Amplitude Accuracy Test Setup

Procedure

- 1. Zero and calibrate the power meter.
- 2. Configure equipment as shown in Figure 5-1, with the power splitter connected directly to the signal analyzer input through the adapter.

CAUTION To minimize stress on the test equipment connections, support the power sensor.

- 3. If the auto alignment for the analyzer has not been performed within the past 24 hours, press **System**, **Alignments**, **Align Now**, **All** to perform the auto alignment routine.
- 4. Press Mode, Spectrum Analyzer, Mode Preset on the analyzer.
- 5. Set up the synthesized sweeper by pressing:

```
CW, 50, MHz
Power Level, -4, dBm
RF (On)
```

6. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External FREQ Channel, Center Freq, 50, MHz SPAN X Scale, 2, MHz AMPTD Y Scale, Attenuation, Mech Atten, 10, dB Input/Output, RF Input, RF Coupling, select DC Sweep/Control, Sweep Setup, Swp Time Rules, SA - Accuracy Meas Setup, Average/Hold Number, 20, Enter Trace/Detector, Trace Average Single

- 7. Perform the following steps for each row listed in Table 5-1:
 - a. Set the synthesized sweeper amplitude to the value listed in the Nominal Source Amplitude column in Table 5-1.
 - b. Set the Mech Atten as indicated in the Attenuation column in Table 5-1.
 - c. Set the Span as listed in the Span column of Table 5-1.
 - d. Record the synthesized sweeper amplitude, as measured by the power meter, in the Power Meter Amplitude column of Table 5-1.
 - e. On the signal analyzer, press **Restart**.
 - f. Wait for the signal analyzer to finish averaging.
 - g. Press Peak Search.
 - h. Record the signal amplitude, as measured by the analyzer in the Measured Amplitude column of Table 5-1.

Chapter 5 21

i. Calculate the signal amplitude accuracy error using the following equation, and record the results under the Amplitude Accuracy Error column:

Amplitude Accuracy Error = Meas_amp -Power_meter

Table 5-1 Amplitude Accuracy Results

Nominal Source Amplitude (dBm)	Attenuation (dB)	Span (MHz)	Measured Amplitude Meas_amp (dBm)	Power Meter Amplitude Power_meter (dBm)	Amplitude Accuracy Error (dB)	Test Limit (dB)
-4	10	2				±1.13 dB
-9	10	1				±1.13 dB
-14	10	0.5				±1.13 dB
-4	20	0.1				±1.13 dB
-14	20	0.1				±1.13 dB
-4	30	0.1				±1.13 dB
-14	30	0.1				±1.13 dB

Testing Preamp Option (P03, P08, P13, P26)

Instruments containing Option P03, P08, P13, P26 must have the preamp function turned on and tested.

Procedure

- 1. On the analyzer, press AMPTD Y Scale, More, Internal Preamp, Low Band.
- 2. Connect the equipment as shown in Figure 5-1 on page 20, using a 30 dB pad between the adaptor and the signal analyzer input.
- 3. Set the synthesized sweeper amplitude to the value listed in the Nominal Source Amplitude column in Table 5-2.
- 4. Set the signal analyzer input attenuation to 0 dB.
- 5. Set the Span as listed in Table 5-2.
- 6. Record the synthesized sweeper amplitude, as measured by the power meter, in the Power Meter Amplitude column of Table 5-2.
- 7. On the signal analyzer, press **Restart**.
- 8. Wait for the analyzer to finish averaging.
- 9. Press Peak Search.
- 10.Record the signal amplitude as measured by the analyzer in the measured amplitude column of Table 5-2.
- 11. Calculate the signal amplitude accuracy using the following equation:

Amplitude Accuracy Error = Meas_amp +30 dB -Power_meter

12. Record the results under the Amplitude Accuracy Error column of Table 5-2.

Table 5-2 Amplitude Accuracy Results (Option P03, P08, P13, P26)

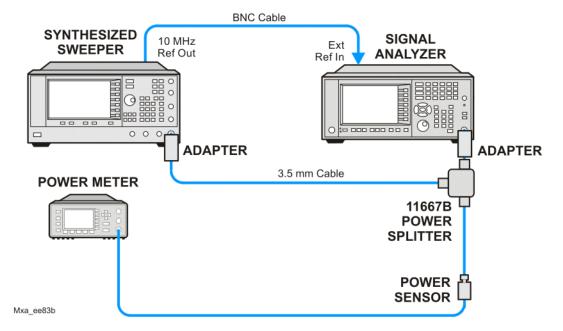
Nominal Source Amplitude (dBm)	Low- band Preamp	Res BW (kHz)	Span (kHz)	Measured Amplitude Meas_amp (dBm)	Power Meter Amplitude Power_meter (dBm)	Amplitude Accuracy Error (dB)	Test Limit (dB)
-13	ON	1	106				±1.30 dB

Chapter 5 23

Amplitude Accuracy at 50 MHz

Testing Preamp Option (P03, P08, P13, P26)

6 Frequency Response (Flatness)


Test Limits

Frequency Range	Limit Relative to 50 MHz
20 Hz to 3.6 GHz	±1.5 dB
>3.6 GHz to 8.4 GHz	±2.5 dB
>8.4 GHz to 13.6 GHz	±3.0 dB
>13.6 GHz to 26.5 GHz	±3.5 dB

The frequency response test measures the signal analyzer's amplitude error as a function of the tuned frequency. Measurements are made ranging from 50 MHz to the maximum frequency range of your analyzer. The signal source amplitude is measured with a power meter to eliminate error due to source flatness. The measured value is normalized to 50 MHz.

Item	Critical Specifications (for this test)	Recommended Agilent Model
Adapter Type N (m) to 3.5 mm (m)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1743
Adapter, 3.5 mm (f) to 3.5 mm (f)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	83059B
Cable, 3.5 mm, 1 meter	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.4:1	11500E
Cables, BNC 120 cm	Frequency: 10 MHz	10503A
Power Meter	Compatible with power sensor	E4418B
Power Sensor	Frequency Range: 50 MHz to 26.5 GHz	8485A
Power Splitter	Frequency Range: 50 MHz to 26.5 GHz Tracking between ports: < 0.25 dB	11667B
Synthesized Sweeper	Frequency Range: 50 MHz to 26 GHz	PSG

Figure 6-1 Frequency Response Test Setup

Procedure

- 1. Zero and calibrate the power meter and power sensor as described in the power meter operation manual.
- 2. Configure the equipment as shown in Figure 6-1.

NOTE Connect the power splitter to the signal analyzer input using the appropriate adapter. Do not use a cable.

- 3. Assure the signal analyzer's built-in auto alignment has been performed within the last 24 hours.
- 4. Press Mode, Spectrum Analyzer, Mode Preset on the signal analyzer, and press Preset on the synthesized sweeper.
- 5. Set up the synthesized sweeper by pressing:

```
CW, 50, MHz Power level, -4, dBm
```

6. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External FREQ Channel, Center Freq, 50, MHz SPAN X Scale, Span, 50, kHz AMPTD Y Scale, Ref Level, 0, dBm

- 7. Adjust the synthesized sweeper output power for a power meter reading of -10 dBm ±0.1 dB.
- 8. On the signal analyzer, press **Single**.
- 9. Press the **Peak Search** key on the signal analyzer to position the marker on the peak of the signal.
- 10.Refer to Table 6-1, "Frequency Response (Flatness) Results." Enter the amplitude of the signal displayed on the signal analyzer into the Meas_{Amp} column of Table 6-1.
- 11.Enter the power meter reading into the Power_{Meter} column of Table 6-1.
- 12. Tune the synthesized sweeper and signal analyzer to the next frequency listed in Table 6-1.
- 13.Enter the power sensor calibration factor into the power meter.
- 14. For frequencies 3.6 GHz and above, press **AMPTD Y Scale**, then **Presel Center** to center the preselector filter for an optimum amplitude measurement.
- 15.Repeat step 7 through step 14 and complete the remainder of Table 6-1 for the frequency range of your analyzer.
- 16. Compute the measurement error ($Meas_{Error} = Meas_{Amp} Power_{Meter}$).

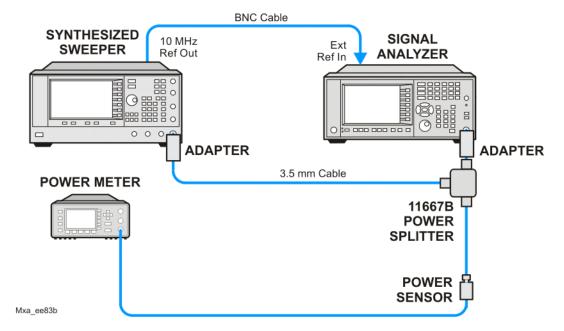
Chapter 6 27

- 17.Compute the flatness error normalized to 50 MHz: $(Meas_{Error}$ –Meas $_{Error}$ @ 50 MHz)
- 18. Enter the computed flatness error value into the ${\rm Flat}_{\rm Norm}$ column of Table 6-1.
- 19. Compare the value of \mbox{Flat}_{Norm} to the test limit.

Table 6-1 Frequency Response (Flatness) Results

Center Frequency	Analyzer Amplitude Meas _{amp}	Power Meter Measurement Power _{meter}	Meas Error Meas _{error}	Flatness Normalized to 50 MHz Flat _{Norm}	Flatness Error Test Limits (dB)
50 MHz				0	Ref
1 GHz					±1.5 dB
2 GHz					1.5 dB
3 GHz					±1.5 dB
3.5 GHz					±1.5 dB
4 GHz					±2.5 dB
6 GHz					±2.5 dB
8 GHz					±2.5 dB
9 GHz					±3.0 dB
11 GHz					±3.0 dB
13 GHz					±3.0 dB
14 GHz					±3.5 dB
17 GHz					±3.5 dB
20 GHz					±3.5 dB
23 GHz					±3.5 dB
26 GHz					±3.5 dB

7 Frequency Response (Flatness), Preamp On


Test Limits

Frequency Range	Limit Relative to 50 MHz
100 kHz to 3.6 GHz	±2.0 dB
>3.6 GHz to 8.4 GHz	±3.0 dB
>8.4 GHz to 13.6 GHz	±3.5 dB
>13.6 GHz to 26.5 GHz	±4.0 dB

The frequency response test, with preamplifier on, measures the signal analyzer's amplitude error as a function of the tuned frequency. Measurements are made ranging from 50 MHz to the maximum frequency range of the preamp. The signal source amplitude is measured with a power meter to eliminate error due to source flatness. The measured value is normalized to 50 MHz.

Item	Critical Specifications (for this test)	Recommended Agilent Model
Adapter Type N (m) to 3.5 mm (m)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1743
Adapter 3.5 mm (f) to 3.5 mm (f)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	83059B
Cable, 3.5 mm, 1 meter	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.4:1	11500E
Cables, BNC 120 cm	Frequency: 10 MHz	10503A
Power Meter	Compatible with power sensor	E4418B
Attenuator, 30 dB Fixed	Frequency: 50 MHz Accuracy: ±0.05 dB	11708A
Power Sensor	Frequency Range: 50 MHz to 26.5 GHz Amplitude Range: -65 dBm to -55 dBm	8485D
Power Splitter	Frequency Range: 50 MHz to 26.5 GHz Tracking between ports: < 0.25 dB	11667B
Synthesized Sweeper	Frequency Range: 50 MHz to 26.5 GHz	PSG

Figure 7-1 Frequency Response Test Setup

Procedure

- 1. Zero and calibrate the power meter and power sensor as described in the power meter operation manual.
- 2. Configure the equipment as shown in Figure 7-1.

NOTE Connect the power splitter to the signal analyzer input using the appropriate adapter. Do not use a cable.

- 3. Assure the signal analyzer's built-in auto alignment has been performed within the last 24 hours.
- 4. Press Mode, Spectrum Analyzer, Mode Preset on the signal analyzer, and press Preset on the synthesized sweeper.
- 5. Set up the synthesized sweeper by pressing:

```
CW, 50, MHz
Power level, -54, dBm
```

6. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External FREQ Channel, Center Freq, 50, MHz SPAN X Scale, Span, 50, kHz AMPTD Y Scale, More, Internal Preamp Full Range AMPTD Y Scale, Attenuation, Mech Atten, 0, dB AMPTD Y Scale, Ref Level, -55, dBm

- 7. Adjust the synthesized sweeper output power for a power meter reading of -60 dBm ±0.1 dB.
- 8. On the signal analyzer, press **Single**.
- 9. Press the **Peak Search** key on the signal analyzer to position the marker on the peak of the signal.
- 10.Refer to Table 7-1, "Frequency Response (Flatness) Results." Enter the amplitude of the signal displayed on the signal analyzer into the $Meas_{Amp}$ column of Table 7-1.
- 11. Enter the power meter reading into the Power_{Meter} column of Table 7-1.
- 12. Tune the synthesized sweeper and signal analyzer to the next frequency listed in Table 7-1.
- 13.Enter the power sensor calibration factor into the power meter.
- 14. For frequencies 3.6 GHz and above, press **AMPTD Y Scale**, then **Presel Center** to center the preselector filter for an optimum amplitude measurement.
- 15.Repeat step 7 through step 14 and complete the remainder of Table 7-1 for the frequency range of your preamp.

Chapter 7 31

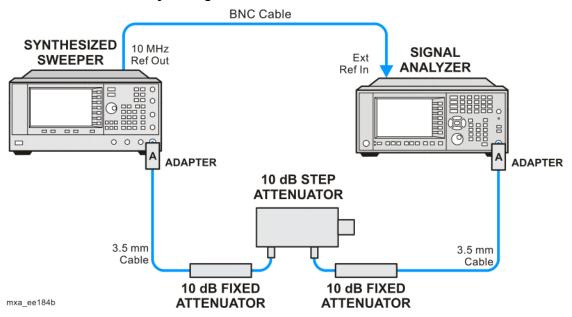
- $16. Compute \ the \ measurement \ error \ (Meas_{Error} = Meas_{Amp} \ -Power_{Meter}).$
- 17.Compute the flatness error normalized to 50 MHz: $(Meas_{Error}$ –Meas_{Error} @ 50 MHz)
- 18.Enter the computed flatness error value into the $Flat_{Norm}$ column of Table 7-1.
- 19. Compare the value of ${\rm Flat}_{\rm Norm}$ to the test limit.

Table 7-1 Frequency Response (Flatness) Results

Center Frequency	Analyzer Amplitude Meas _{amp}	Power Meter Measurement Power _{meter}	Meas Error Meas _{error}	Flatness Normalized to 50 MHz Flat _{Norm}	Flatness Error Test Limits (dB)
50 MHz				0	Ref
1 GHz					±2.0 dB
2 GHz					±2.0 dB
3 GHz					±2.0 dB
3.5 GHz					±2.0 dB
4 GHz					±3.0 dB
6 GHz					±3.0 dB
8 GHz					±3.0 dB
9 GHz					±3.5 dB
11 GHz					±3.5 dB
13 GHz					±3.5 dB
14 GHz					±4.0 dB
17 GHz					±4.0 dB
20 GHz					±4.0 dB
23 GHz					±4.0 dB
26 GHz					±4.0 dB

8 Scale Fidelity

Test Limits


The scale fidelity error will be $\leq \pm 1.0$ dB with ≤ 10 dBm at the mixer.

This test checks the scale fidelity of the instrument by maintaining a constant reference level and measuring signals of different amplitudes over most of the display range. This test sets the input attenuator to 10 dB and the Reference Level to 0 dBm. The external attenuator is set to 0 dB, and the amplitude of the source is adjusted to set the displayed signal at the reference level.

The instrument's internal marker is used to measure the reference amplitude. The Marker Delta function is activated and the RF input is reduced using the external precision step attenuator. Signal input levels from 0 dBm to -50 dBm are measured.

Item	Critical Specifications (for this test)	Recommended Agilent Model
Adapter Type-N (m) to 3.5 mm (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1745
Adapter 3.5 mm (f) to 3.5 mm (f)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	83059B
Attenuator, 10 dB Step	Range: 0-50 dB Frequency: 50 MHz Accuracy: ±0.25 dB	8495A
Attenuator, 10 dB fixed (2 required)	Frequency: 50 MHz VSWR: < 1.2:1	8493C, Option 010
Cable, 3.5 mm, 1 meter (2 required)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.4:1	11500E
Cable, BNC 120 cm	Frequency: 10 MHz	10503A
Synthesized Sweeper	Output Level Accuracy: 0 to -15 dBm: ±1.0 dB	PSG

Figure 8-1 Scale Fidelity Setup

NOTE

Averaging is used for all measurements to improve repeatability and reduce measurement uncertainty.

Procedure

- 1. Configure the equipment as shown in Figure 8-1.
- 2. Preset the Source and press Mode, Spectrum Analyzer, Mode Preset on the analyzer.
- 3. Set up the synthesized sweeper by pressing:

Frequency, 50, MHz Amplitude, +5, dBm RF On/Off, On

4. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External FREQ Channel, Center Freq, 50, MHz SPAN X Scale, Span, 1, MHz AMPTD Y Scale, Ref Level, 0, dBm Meas Setup, Average/Hold Number, 10, Enter Trace/Detector, Trace Average Peak Search

- 5. Set the external 10 dB step attenuator to 0 dB.
- 6. Adjust the amplitude on the signal source until the marker amplitude on the analyzer reads $-15~dBm \pm 0.2~dB$.
- 7. On the analyzer, press the **Single**, **Restart** to trigger a 10 sweep average.
- 8. On the analyzer, activate the Marker Delta function by pressing **Peak Search**, **Marker Delta**.
- 9. Perform the following steps for each attenuator setting listed in the table below:
 - a. Select the next External attenuator setting.
 - b. Press the **Restart** key to trigger a 10 sweep average.
 - c. Enter the delta marker value into Table 8-1.
 - d. Check delta marker reading against the test limits.

Chapter 8 35

 Table 8-1
 Scale Fidelity Results

External Attenuator Setting	Minimum (dB)	Marker Delta Value (dB)	Maximum (dB)
0	N/A	Reference	N/A
10	-11.0		-9.0
20	-21.0		-19.0
30	-31.0		-29.0
40	-41.0		-39.0
50	-51.0		-49.0

```
A
amplitude accuracy test, 19
  option 1DS, 23
amplitude linearity test, 33
D
DANL test, 9
displayed average noise level. See DANL, 9
E
equipment
   functional tests, 7
  warm-up time, 6
\mathbf{F}
frequency readout accuracy test, 13
frequency response
  (flatness) test, 25
frequency response (flatness) test
  preamp on, 29
functional testing
  performance verification, 4
functional tests
  before performing, 6
  equipment list, 7
  introduction, 3
   vs performance verification tests, 4
   warm-up time, 6
  See also individual functional tests, 3
P
performance verification tests vs functional tests, 4
S
second harmonic distortion test, 15
T
tests. See functional tests
```